Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398647

RESUMEN

Amyloidosis is a group of protein misfolding diseases, which include spongiform encephalopathies, Alzheimer's disease and transthyretin (TTR) amyloidosis; all of them are characterized by extracellular deposits of an insoluble fibrillar protein. TTR amyloidosis is a highly debilitating and life-threatening disease. Patients carry less stable TTR homotetramers that are prone to dissociation into non-native monomers, which in turn rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Liver transplantation to induce the production of wild-type TTR was the only therapeutic strategy until recently. A promising approach to ameliorate transthyretin (TTR) amyloidosis is based on the so-called TTR kinetic stabilizers. More than 1000 TTR stabilizers have already been tested by many research groups, but the diversity of experimental techniques and conditions used hampers an objective prioritization of the compounds. One of the most reliable and unambiguous techniques applied to determine the structures of the TTR/drug complexes is X-ray diffraction. Most of the potential inhibitors bind in the TTR channel and the crystal structures reveal the atomic details of the interaction between the protein and the compound. Here we suggest that the stabilization effect is associated with a compaction of the quaternary structure of the protein and propose a scoring function to rank drugs based on X-ray crystallography data.


Asunto(s)
Neuropatías Amiloides Familiares , Prealbúmina , Humanos , Prealbúmina/metabolismo , Cristalografía por Rayos X , Neuropatías Amiloides Familiares/tratamiento farmacológico , Amiloide/química
2.
J Struct Biol ; 215(4): 108038, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37858875

RESUMEN

Transcription of specific genes in bacteria under environmental stress is frequently initiated by extracytoplasmic function (ECF) σ factors. ECFs σ factors harbour two conserved domains, σ2 and σ4, for transcription initiation by recognition of the promoter region and recruitment of RNA polymerase (RNAP). The crystal structure of Streptomyces tsukubaensis SigG1, an ECF56-family σ factor, was determined revealing σ2, σ4 and the additional carboxi-terminal domain SnoaL_2 tightly packed in a compact conformation. The structure of anti-sigma RsfG was also determined by X-ray crystallography and shows a rare ß-barrel fold. Analysis of the metal binding motifs inside the protein barrel are consistent with Fe(III) binding, which is in agreement with previous findings that the Streptomyces tsukubaensis ECF56 SigG1-RsfG system is involved in metal-ion homeostasis.


Asunto(s)
Factor sigma , Streptomyces , Factor sigma/genética , Factor sigma/química , Factor sigma/metabolismo , Proteínas Bacterianas/química , Compuestos Férricos , Modelos Moleculares , Streptomyces/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Regulación Bacteriana de la Expresión Génica
3.
Mar Drugs ; 21(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37367669

RESUMEN

Five undescribed pentaketide derivatives, (R)-6,8-dihydroxy-4,5-dimethyl-3-methylidene-3,4-dihydro-1H-2-benzopyran-1-one (1), [(3S,4R)-3,8-dihydroxy-6-methoxy-4,5-dimethyl-1-oxo-3,4-dihydro-1H-isochromen-3-yl]methyl acetate (2), (R)-5, 7-dimethoxy-3-((S)-(1-hydroxyethyl)-3,4-dimethylisobenzofuran-1(3H)-one (4b), (S)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran 1(3H)-one (5), and a p-hydroxyphenyl-2-pyridone derivative, avellaneanone (6), were isolated together with the previously reported (R)-3-acetyl-7-hydroxy-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (3), (R)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (4a) and isosclerone (7), from the ethyl acetate extract of a culture of a marine sponge-derived fungus, Hamigera avellanea KUFA0732. The structures of the undescribed compounds were elucidated using 1D and 2D NMR, as well as high-resolution mass spectral analyses. The absolute configurations of the stereogenic carbons in 1, 4b, 5, and 6 were established by X-ray crystallographic analysis. The absolute configurations of C-3 and C-4 in 2 were determined by ROESY correlations and on the basis of their common biosynthetic origin with 1. The crude fungal extract and the isolated compounds 1, 3, 4b, 5, 6, and 7 were assayed for their growth inhibitory activity against various plant pathogenic fungi viz. Alternaria brassicicola, Bipolaris oryzae, Colletotrichum capsici, C. gloeosporiodes, Curvularia oryzae, Fusarium semitectum, Lasiodiplodia theobromae, Phytophthora palmivora, Pyricularia oryzae, Rhizoctonia oryzae and Sclerotium rolfsii.


Asunto(s)
Poríferos , Animales , Poríferos/microbiología , Cumarinas , Estructura Molecular
4.
Redox Biol ; 63: 102764, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257275

RESUMEN

Despite the large amounts of H2O2 generated in mammalian peroxisomes, cysteine residues of intraperoxisomal proteins are maintained in a reduced state. The biochemistry behind this phenomenon remains unexplored, and simple questions such as "is the peroxisomal membrane permeable to glutathione?" or "is there a thiol-disulfide oxidoreductase in the organelle matrix?" still have no answer. We used a cell-free in vitro system to equip rat liver peroxisomes with a glutathione redox sensor. The organelles were then incubated with glutathione solutions of different redox potentials and the oxidation/reduction kinetics of the redox sensor was monitored. The data suggest that the mammalian peroxisomal membrane is promptly permeable to both reduced and oxidized glutathione. No evidence for the presence of a robust thiol-disulfide oxidoreductase in the peroxisomal matrix could be found. Also, prolonged incubation of organelle suspensions with glutaredoxin 1 did not result in the internalization of the enzyme. To explore a potential role of glutathione in intraperoxisomal redox homeostasis we performed kinetic simulations. The results suggest that even in the absence of a glutaredoxin, glutathione is more important in protecting cysteine residues of matrix proteins from oxidation by H2O2 than peroxisomal catalase itself.


Asunto(s)
Peroxisomas , Proteína Disulfuro Reductasa (Glutatión) , Ratas , Animales , Disulfuro de Glutatión/metabolismo , Peroxisomas/metabolismo , Cisteína/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/análisis , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Peróxido de Hidrógeno/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Proteínas/metabolismo , Mamíferos/metabolismo , Homeostasis
5.
ACS Sens ; 8(3): 1033-1053, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36892002

RESUMEN

Metal-organic frameworks (MOFs) are versatile compounds with emergent applications in the fabrication of biosensors for amyloid diseases. They hold great potential in biospecimen protection and unprecedented probing capabilities for optical and redox receptors. In this Review, we summarize the main methodologies employed in the fabrication of MOF-based sensors for amyloid diseases and collect all available data in the literature related to their performance (detection range, limit of detection, recovery, time of analysis, among other parameters). Nowadays, MOF sensors have evolved to a point where they can, in some cases, outperform technologies employed in the detection of several amyloid biomarkers (amyloid ß peptide, α-synuclein, insulin, procalcitonin, and prolactin) present in biological fluids, such as cerebrospinal fluid and blood. A special emphasis has been given by researchers on Alzheimer's disease monitoring to the detriment of other amyloidosis that are underexploited despite their societal relevance (e.g., Parkinson's disease). There are still important obstacles to overcome in order to selectively detect the various peptide isoforms and soluble amyloid species associated with Alzheimer's disease. Furthermore, MOF contrast agents for imaging peptide soluble oligomers in living humans are also scarce (if not nonexistent), and action in this direction is unquestionably required to clarify the contentious link between the amyloidogenic species and the disease, guiding research toward the most promising therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Estructuras Metalorgánicas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Estructuras Metalorgánicas/química , Enfermedad de Parkinson/diagnóstico , Amiloidosis/diagnóstico
6.
Mar Drugs ; 21(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36976243

RESUMEN

An undescribed hybrid phenalenone dimer, talaropinophilone (3), an unreported azaphilone, 7-epi-pinazaphilone B (4), an unreported phthalide dimer, talaropinophilide (6), and an undescribed 9R,15S-dihydroxy-ergosta-4,6,8 (14)-tetraen-3-one (7) were isolated together with the previously reported bacillisporins A (1) and B (2), an azaphilone derivative, Sch 1385568 (5), 1-deoxyrubralactone (8), acetylquestinol (9), piniterpenoid D (10) and 3,5-dihydroxy-4-methylphthalaldehydic acid (11) from the ethyl acetate extract of the culture of a marine sponge-derived fungus, Talaromyces pinophilus KUFA 1767. The structures of the undescribed compounds were elucidated by 1D and 2D NMR as well as high-resolution mass spectral analyses. The absolute configuration of C-9' of 1 and 2 was revised to be 9'S using the coupling constant value between C-8' and C-9' and was confirmed by ROESY correlations in the case of 2. The absolute configurations of the stereogenic carbons in 7 and 8 were established by X-ray crystallographic analysis. Compounds 1,2, 4-8, 10 and 11 were tested for antibacterial activity against four reference strains, viz. two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as three multidrug-resistant strains, viz. an extended-spectrum ß-lactamase (ESBL)-producing E. coli, a methicillin-resistant S. aureus (MRSA) and a vancomycin-resistant E. faecalis (VRE). However, only 1 and 2 exhibited significant antibacterial activity against both S. aureus ATCC 29213 and MRSA. Moreover, 1 and 2 also significantly inhibited biofilm formation in S. aureus ATCC 29213 at both MIC and 2xMIC concentrations.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Poríferos , Talaromyces , Animales , Staphylococcus aureus , Escherichia coli , Poríferos/química , Talaromyces/química , Antibacterianos/química , Esteroides , Pruebas de Sensibilidad Microbiana
7.
Antibiotics (Basel) ; 11(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358143

RESUMEN

Fungal infections are one of the main causes of mortality and morbidity worldwide and taking into account the increasing incidence of strains resistant to classical antifungal drugs, the development of new agents has become an urgent clinical need. Considering that thioxanthones are bioisosteres of xanthones with known anti-infective actions, their scaffolds were selected for this study. A small library of synthesized aminothioxanthones (1-10) was evaluated for in vitro antifungal activity against Candida albicans, Aspergillus fumigatus, and Trichophyton rubrum; for the active compounds, the spectrum was further extended to other clinically relevant pathogenic fungi. The results showed that only compounds 1, 8, and 9 exhibited inhibitory and broad-spectrum antifungal effects. Given the greater antifungal potential presented, compound 1 was the subject of further investigations to study its anti-virulence activity and in an attempt to elucidate its mechanism of action; compound 1 seems to act predominantly on the cellular membrane of C. albicans ATCC 10231, altering its structural integrity, without binding to ergosterol, while inhibiting two important virulence factors-dimorphic transition and biofilm formation-frequently associated with C. albicans pathogenicity and resistance. In conclusion, the present work proved the usefulness of thioxanthones in antifungal therapy as new models for antifungal agents.

8.
Mar Drugs ; 20(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36354995

RESUMEN

An unreported isocoumarin, (3S,4R)-4-hydroxy-6-methoxymellein (2), an undescribed propylpyridinium anthraquinone (4), and an unreported C-glucosyl resorcinol derivative, acetyl carnemycin E (5c), were isolated, together with eight previously reported metabolites including p-hydroxybenzaldehyde (1), 1,3-dimethoxy-8-hydroxy-6-methylanthraquinone (3a), 1,3-dimethoxy-2,8-dihydroxy-6-methylanthraquinone (3b), emodin (3c), 5[(3E,5E)-nona-3,5-dien-1-yl]benzene (5a), carnemycin E (5b), tajixanthone hydrate (6a) and 15-acetyl tajixanthone hydrate (6b), from the ethyl acetate extract of the culture of a marine sponge-derived fungus, Aspergillus stellatus KUFA 2017. The structures of the undescribed compounds were elucidated by 1D and 2D NMR and high resolution mass spectral analyses. In the case of 2, the absolute configurations of the stereogenic carbons were determined by comparison of their calculated and experimental electronic circular dichroism (ECD) spectra. The absolute configurations of the stereogenic carbons in 6a and 6b were also determined, for the first time, by X-ray crystallographic analysis. Compounds 2, 3a, 3b, 4, 5a, 5b, 5c, 6a, and 6b were assayed for antibacterial activity against four reference strains, viz. two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as three multidrug-resistant strains. However, only 5a exhibited significant antibacterial activity against both reference and multidrug-resistant strains. Compound 5a also showed antibiofilm activity against both reference strains of Gram-positive bacteria.


Asunto(s)
Isocumarinas , Poríferos , Animales , Isocumarinas/farmacología , Isocumarinas/química , Poríferos/química , Hongos/química , Antraquinonas/farmacología , Antraquinonas/química , Antibacterianos/química , Resorcinoles , Pruebas de Sensibilidad Microbiana
9.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613773

RESUMEN

Over recent decades, multidrug-resistant pathogens have become a global concern, with WHO even considering it one of the biggest threats to global health, food security, and development today, which led to the search for alternative antibacterial agents. A special class is formed by peptides composed by the diphenylalanine motif whose antibacterial properties result from their supramolecular arrangement into nanotubes. However, several other dipeptides that also form nanotubes have been largely overlooked. Here, we present the antibacterial activity of four dipeptide nanotubes. The results point to diverse mechanisms through which dipeptide nanotubes exert their effect against bacteria. Antibacterial activity was similar for dipeptide nanotubes sufficiently wide to allow water flux while dipeptides displaying smaller channels were inactive. This suggests that two of the tested dipeptides, L-Phe-L-Phe (FF, diphenylalanine) and L-Leu-L-Ser (LS), are pore forming structures able to induce membrane permeation and affect cellular hydration and integrity. Of these two dipeptides, only FF demonstrated potential to inhibit biofilm formation. The amyloid-like nature and hydrophobicity of diphenylalanine assemblies are probably responsible for their adhesion to cell surfaces preventing biofilm formation and bacteria attachment.


Asunto(s)
Dipéptidos , Nanotubos , Dipéptidos/farmacología , Dipéptidos/química , Nanotubos/química , Péptidos/química , Antibacterianos/farmacología , Fenilalanina/química , Biopelículas
10.
ACS Chem Neurosci ; 12(19): 3708-3718, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34505762

RESUMEN

Alzheimer's disease is associated with the deposition of extracellular senile plaques, made primarily of amyloid-ß (Aß), particularly peptides Aß1-42 and Aß1-40. Neprilysin, or neutral endopeptidase (NEP), catalyzes proteolysis of the amyloid peptides (Aß) and is recognized as one of the major regulators of the levels of these peptides in the brain, preventing Aß accumulation and plaque formation. Here, we used a combination of techniques to elucidate the mechanism of Aß binding and cleavage by NEP. Our findings indicate that the Aß31-X cleavage products remain bound to the neprilysin active site, reducing proteolytic activity. Interestingly, it was already shown that this Aß31-35 sequence is also critical for recognition of Aß peptides by other targets, such as the serpin-enzyme complex receptor in neuronal cells.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Amiloide , Humanos , Neprilisina , Placa Amiloide
11.
Eur J Med Chem ; 226: 113847, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34555615

RESUMEN

Transthyretin (TTR) has a well-established role in neuroprotection in Alzheimer's Disease (AD). We have setup a drug discovery program of small-molecule compounds that act as chaperones enhancing TTR/Amyloid-beta peptide (Aß) interactions. A combination of computational drug repurposing approaches and in vitro biological assays have resulted in a set of molecules which were then screened with our in-house validated high-throughput screening ternary test. A prioritized list of chaperones was obtained and corroborated with ITC studies. Small-molecule chaperones have been discovered, among them our lead compound Iododiflunisal (IDIF), a molecule in the discovery phase; one investigational drug (luteolin); and 3 marketed drugs (sulindac, olsalazine and flufenamic), which could be directly repurposed or repositioned for clinical use. Not all TTR tetramer stabilizers behave as chaperones in vitro. These chemically diverse chaperones will be used for validating TTR as a target in vivo, and to select one repurposed drug as a candidate to enter clinical trials as AD disease-modifying drug.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Descubrimiento de Drogas , Chaperonas Moleculares/farmacología , Prealbúmina/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Enfermedad de Alzheimer/metabolismo , Calorimetría , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Estructura Molecular , Prealbúmina/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Relación Estructura-Actividad
12.
Molecules ; 26(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34443658

RESUMEN

In recent decades, fungi-derived naturally occurring quinazolines have emerged as potential drug candidates. Nevertheless, most studies are conducted for bioactivity assays, and little is known about their absorption, distribution, metabolism, and elimination (ADME) properties. To perform metabolic studies, the synthesis of the naturally occurring quinazolinone, fiscalin B (1), and its chloro derivative, 4-((1H-indol-3-yl)methyl)-8,10-dichloro-1-isobutyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (2), disclosed as an antibacterial agent, was performed in a gram scale using a microwave-assisted polycondensation reaction with 22% and 17% yields, respectively. The structure of the non-natural (+)-fiscalin B was established, for the first time, by X-ray crystallography as (1R,4S)-1, and the absolute configuration of the naturally occurring fiscalin B (-)-1 was confirmed by comparison of its calculated and experimental electronic circular dichroism (ECD) spectra as (1S,4R)-1. in vitro metabolic studies were monitored for this class of natural products for the first time by ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). The metabolic characteristics of 1 and 2 in human liver microsomes indicated hydration and hydroxylation mass changes introduced to the parent drugs.


Asunto(s)
Antibacterianos/metabolismo , Productos Biológicos/metabolismo , Metaboloma/genética , Pirazinas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Cristalografía por Rayos X , Hongos/efectos de los fármacos , Humanos , Indoles/síntesis química , Indoles/química , Indoles/metabolismo , Espectrometría de Masas , Estructura Molecular , Pirazinas/síntesis química , Pirazinas/química , Quinazolinas/síntesis química , Quinazolinas/química , Quinazolinas/metabolismo , Estereoisomerismo
13.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203998

RESUMEN

The overexpression of efflux pumps is one of the causes of multidrug resistance, which leads to the inefficacy of drugs. This plays a pivotal role in antimicrobial resistance, and the most notable pumps are the AcrAB-TolC system (AcrB belongs to the resistance-nodulation-division family) and the NorA, from the major facilitator superfamily. In bacteria, these structures can also favor virulence and adaptation mechanisms, such as quorum-sensing and the formation of biofilm. In this study, the design and synthesis of a library of thioxanthones as potential efflux pump inhibitors are described. The thioxanthone derivatives were investigated for their antibacterial activity and inhibition of efflux pumps, biofilm formation, and quorum-sensing. The compounds were also studied for their potential to interact with P-glycoprotein (P-gp, ABCB1), an efflux pump present in mammalian cells, and for their cytotoxicity in both mouse fibroblasts and human Caco-2 cells. The results concerning the real-time ethidium bromide accumulation may suggest a potential bacterial efflux pump inhibition, which has not yet been reported for thioxanthones. Moreover, in vitro studies in human cells demonstrated a lack of cytotoxicity for concentrations up to 20 µM in Caco-2 cells, with some derivatives also showing potential for P-gp modulation.

14.
Molecules ; 26(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073048

RESUMEN

Thioxanthones are bioisosteres of the naturally occurring xanthones. They have been described for multiple activities, including antitumor. As such, the synthesis of a library of thioxanthones was pursued, but unexpectedly, four tetracyclic thioxanthenes with a quinazoline-chromene scaffold were obtained. These compounds were studied for their human tumor cell growth inhibition activity, in the cell lines A375-C5, MCF-7 and NCI-H460. Photophysical studies were also performed. Two of the compounds displayed GI50 values below 10 µM for the three tested cell lines, and structure-activity relationship studies were established. Three compounds presented similar wavelengths of absorption and emission, characteristic of dyes with a push-pull character. The structures of two compounds were elucidated by X-ray crystallography. Two tetracyclic thioxanthenes emerged as hit compounds. One of the two compounds accumulated intracellularly as a bright fluorescent dye in the green channel, as analyzed by both fluorescence microscopy and flow cytometry, making it a promising theranostic cancer drug candidate.


Asunto(s)
Tioxantenos/química , Tioxantenos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Fluorescencia , Inhibidores de Crecimiento/farmacología , Humanos , Quinazolinas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Xantonas/química , Xantonas/farmacología
15.
Molecules ; 26(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804175

RESUMEN

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1-3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1-3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Carbazoles/síntesis química , Carbazoles/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Alcaloides/síntesis química , Alcaloides/farmacología , Línea Celular , Línea Celular Tumoral , Clausena/química , Células HCT116 , Células HT29 , Humanos , Mutación/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
16.
Phytochemistry ; 181: 112575, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33166747

RESUMEN

Two undescribed viomellein derivatives, xanthoelegansin and spiroxanthoelegansin, were isolated together with clavatol, sitosteanone, vioxanthin, xanthomegnin, viomellein, rubrosulphin, rubrosulphin diacetate, viopurpurin , ochratoxin A, ochratoxin A methyl ester, ochratoxin B and ochratoxin ß, from cultures of the marine sponge-associated fungus Aspergillus elegans KUFA0015. The structures of the undescribed compounds were established based on an extensive analysis of 1D and 2D NMR spectra as well as HRMS data. The structure of xanthoelegansin and the absolute configuration of its stereogenic carbons were confirmed by X-ray analysis. The change in conformation of xanthoelegansin was interpreted using quantum mechanical theoretical calculation data in combination with the observation of the change of the proton signals of the 1,3-dioxepine ring in 1HNMR spectra at varying temperatures. The mechanisms of the formation of xanthoelegansin and spiroxanthoelegansin from viomellein were proposed. Clavatol, sitosteanone, vioxanthin, xanthomegnin, viomellein, xanthoelegansin, rubrosulphin, rubrosulphin diacetate, ochratoxin A, ochratoxin A methyl ester, ochratoxin B and ochratoxin ß were assayed for their antibacterial activity against reference strains and multidrug-resistant isolates from the environment. The tested compounds were also evaluated for their capacity to inhibit biofilm formation in the reference strains.


Asunto(s)
Antibacterianos , Poríferos , Animales , Antibacterianos/farmacología , Aspergillus , Benzopiranos , Indoles , Naftoquinonas , Nitrocompuestos
17.
Chem Soc Rev ; 49(24): 9121-9153, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33136108

RESUMEN

The present review focuses on the use of Metal-Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field. This review assesses, in the first instance, the cytotoxicity of MOFs (particularly those used for various biological applications described throughout this review), and shows that for standard MOFs based on metals already present in active molecules of the human body, toxicity is not a significant limitation. Here we underline the MIL-, UiO- and ZIF-series of MOFs which remain until now the most used materials in drug delivery of active pharmaceutical ingredients (APIs), such as antitumourals or retroviral drugs (with high loading and slow release time). Porosity remains undoubtedly the most studied key property of MOFs, that allows the protection of active biomolecules such as enzymes or the development of antimicrobial materials. Emphasis is given on the usage of MOFs for the detection of biomarkers in biological fluids such as urine and blood (detection of cystinuria, identification of penicillin anaphylaxis, urea, bilirubin, biomarkers related to human intoxication, tumoural indicators, among several others), for which a number of simple devices (such as paper strips) were developed. Despite the remarkable and promising results presented in recent years, the literature remains scarce (mostly non-existent) in terms of direct comparison of these novel technologies with the solutions presently available in the market. Action on this side may make the difference in the next years concerning research on MOFs, to see if some of these materials may reach the end-user as new and more efficient treatments or detection approaches.


Asunto(s)
Antirretrovirales/química , Antineoplásicos/química , Colorantes/química , Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Animales , Antirretrovirales/farmacología , Antineoplásicos/farmacología , Biomarcadores/sangre , Biomarcadores/orina , Liberación de Fármacos , Humanos , Conformación Molecular , Imagen Molecular , Fotoquimioterapia , Porosidad
18.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998442

RESUMEN

Transthyretin (TTR) is a homotetrameric protein involved in human amyloidosis, including familial amyloid polyneuropathy (FAP). Discovering small-molecule stabilizers of the TTR tetramer is a therapeutic strategy for these diseases. Tafamidis, the only approved drug for FAP treatment, is not effective for all patients. Herein, we discovered that benzbromarone (BBM), a uricosuric drug, is an effective TTR stabilizer and inhibitor against TTR amyloid fibril formation. BBM rendered TTR more resistant to urea denaturation, similarly to iododiflunisal (IDIF), a very potent TTR stabilizer. BBM competes with thyroxine for binding in the TTR central channel, with an IC50 similar to IDIF and tafamidis. Results obtained by isothermal titration calorimetry (ITC) demonstrated that BBM binds TTR with an affinity similar to IDIF, tolcapone and tafamidis, confirming BBM as a potent binder of TTR. The crystal structure of the BBM-TTR complex shows two molecules binding deeply in the thyroxine binding channel, forming strong intermonomer hydrogen bonds and increasing the stability of the TTR tetramer. Finally, kinetic analysis of the ability of BBM to inhibit TTR fibrillogenesis at acidic pH and comparison with other stabilizers revealed that benzbromarone is a potent inhibitor of TTR amyloidogenesis, adding a new interesting scaffold for drug design of TTR stabilizers.


Asunto(s)
Benzbromarona/química , Reposicionamiento de Medicamentos , Fármacos Neuroprotectores/química , Prealbúmina/química , Tiroxina/química , Amiloide/antagonistas & inhibidores , Benzbromarona/metabolismo , Benzoxazoles/química , Benzoxazoles/metabolismo , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Diflunisal/análogos & derivados , Diflunisal/química , Diflunisal/metabolismo , Expresión Génica , Humanos , Enlace de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/metabolismo , Prealbúmina/agonistas , Prealbúmina/genética , Prealbúmina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Tiroxina/metabolismo , Tolcapona/química , Tolcapona/metabolismo
19.
Int J Biol Macromol ; 164: 2240-2246, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32771514

RESUMEN

The aggregation kinetics of Aß1-40 peptide was characterized using a synergistic approach by a combination of nuclear magnetic resonance, thioflavin-T fluorescence, transmission electron microscopy and dynamic light scattering. A major finding is the experimental detection of high molecular weight oligomers (HMWO) that converts into fibrils nuclei. Our observations are consistent with a mechanism of Aß1-40 fibrillogenesis that includes the following key steps: i) slow formation of HMWO (Rh ~ 20 nm); ii) conversion of the HMWO into more compact Rh ~ 10 nm fibrils nuclei; iii) fast formation of additional fibrils nuclei through fibril surface catalysed processes; and iv) growth of fibrils by addition of soluble Aß species. Moreover, NMR diffusion experiments show that at 37 °C soluble Aß1-40 remains intrinsically disordered and mostly in monomeric form despite evidences of the presence of dimers and/or other small oligomers. A mathematical model is proposed to simulate the aggregation kinetics of Aß1-40.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Benzotiazoles/química , Disección , Fluorescencia , Cinética , Microscopía Electrónica de Transmisión/métodos , Multimerización de Proteína
20.
Molecules ; 25(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455828

RESUMEN

A series of thirteen xanthones 3-15 was prepared based on substitutional (appendage) diversity reactions. The series was structurally characterized based on their spectral data and HRMS, and the structures of xanthone derivatives 1, 7, and 8 were determined by single-crystal X-ray diffraction. This series, along with an in-house series of aminated xanthones 16-33, was tested for in-vitro antimicrobial activity against seven bacterial (including two multidrug-resistant) strains and five fungal strains. 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7) and 1-(dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8) exhibited antibacterial activity against all tested strains. In addition, 3,4-dihydroxy-1-methyl-9H-xanthen-9-one (3) revealed a potent inhibitory effect on the growth of dermatophyte clinical strains (T. rubrum FF5, M. canis FF1 and E. floccosum FF9), with a MIC of 16 µg/mL for all the tested strains. Compounds 3 and 26 showed a potent inhibitory effect on two C. albicans virulence factors: germ tube and biofilm formation.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Xantonas/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Cristalografía por Rayos X , Humanos , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Difracción de Rayos X , Xantonas/síntesis química , Xantonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...